Saturday $18^{\text {th }}$ April

The table below shows the possible results when you roll 2 dice and add the scores together.

Dice 1

+	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12

Based on this table, the probability of getting a 12 is $1 / 36$, the probability of getting a 6 is $5 / 36$ etc..

It is possible to number the 2 dice differently, and yet keep all the probabilities above the same. Each face of the 2 new dice have positive integers on them, and a dice may have more than one of the same number on different faces. The two dice are not identical. What are the numbers on the two dice?

Dice 1

Dice 2

